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Excitation of rotational modes in two-dimensional systems of driven Brownian particles
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Models of active Brownian motion in two-dimensional~2D! systems developed earlier are investigated with
respect to the influence of linear attracting forces and external noise. Our consideration is restricted to the case
that the driving is rather weak and that the forces show only weak deviations from radial symmetry. In this case
an analytical study of the bifurcations of the system is possible. We show that in the presence of external linear
forces with only small deviations from radial symmetry, the system develops rotational excitations with left-
right symmetry, corresponding to limit cycles in the 4D phase space, the corresponding distribution has the
form of a hoop or a tire in the 4D space. In the last part we apply the theory to swarms of Brownian particles
that are held together by weak and attracting forces, which lead to cluster formation. Since near the center the
potential is at least approximately parabolic and near to the radial symmetry, the swarm develops rotational
modes of motion with left-right symmetry.
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I. INTRODUCTION

Recently several papers describing coherent motion
swarms were published@1–14#. It was shown there that rela
tively simple physical models can be used to describe c
plex behavior of moving clusters in physics@3,15#, biology
@6,8,9,14,16# and social systems@11,12,17#. In many of these
published works, spontaneous motions of clusters w
shown to arise from a self-propelling feature of individu
particles@1,5,6,8–10,13#.

In @1,5,10,11,16# the influence of noise on the cohere
behavior of the swarms was studied. In most of the cas
phase transition in the type of coherent motion was p
dicted, with increasing noise. Rotational modes, or vor
states, were observed, for example, in Ref.@5#. Vortex states,
objects of high current interest, can be used for the desc
tion of flocks of birds@2,7#, systems of dusty plasmas@3#,
and bacteria in a Petri dish@4,6,9,13#.

In earlier papers@18–20# we introduced a generalize
idea of stochastically moving species, active Brownian p
ticles. We want to recall this approach that will be used la
on. Active Brownian particles are Brownian particles wi
the ability to take up energy from the environment and us
for the acceleration of motion. Simple models composed
active Brownian particles were studied in many earlier wo
@21–24#. As already mentioned flocking behavior was d
scribed by interacting mechanisms so far@25#. The concept
of self-propelled particles@1# leads to flocking behavior be
cause of locally interacting particles that differ from previo
models due to an intrinsic driving force. In this paper w
extend previous studies to include the interplay of se
propelling features and direct interaction forces simu
neously that lead to the rotating clusters or to oscillat
clusters in one dimension~1D! @10#. This paper unites the
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active motion concept, for example self-propelling particl
with direct particle-particle interaction. This results in
wider variety of possible models especially for biologic
systems. While previous studies@1,5,25# were able to de-
scribe simple collective motions, they were unable to acco
modate properties of individual particles, for example, s
cific attractive interactions that would lead to swarming.

The question that will be addressed here is; why can c
ters of interacting particles collect as a swarm and then ro
as, for example, exhibited by flocks of birds, and what co
be a plausible reason for these motions. Another problem
would like to address is; what is the consequence of bro
radial symmetry of the swarm, can spontaneous rotation
stopped by certain amount of asymmetry?

In contrast to previous studies@1,4,5,13# the self-
propelling feature is modeled by active Brownian partic
with negative friction@18–20,26# that are able to conver
stored internal energy into motion. As we show below, t
self-propelling feature combined with the attractive partic
particle interaction is a sufficient reason accounting for
formation of swarms and this subsequent vortexlike moti

We will start our investigations by adding to the dynami
of simple physical Brownian particles different mechanis
such as pumping with free energy, which may be realized
several steps as by energy take up, storage and conversi
energy, and energy consuming motion. In this way, the p
ticle motions become more complex resulting in dynami
features that may resemble active biological motions. Hen
the basic idea can be formulated as follows: how much ph
ics is needed to achieve a degree of complexity that give
the impression of motional phenomena found in biologi
systems? We will come back to this question in the last p

In this paper, we will study only the motion in extern
fields on a plane (d52). In particular we are interested i
rotational motions that are excited by the coupling of nonl
ear velocity-dependent~negative! friction terms and interac-
tion forces that can be described by a mean field.
©2002 The American Physical Society06-1
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In Sec. II, we revisit the idea of pumping by negati
friction and outline the basic dynamics of our model inclu
ing Langevin and Fokker-Planck equations.

In Sec. III we outline our previous studies of rotationa
symmetric external potentials.

In Sec. IV we consider the case of active Brownian m
tion in external potentials without rotational symmetry,
particular, in asymmetric parabolic potentials.

In Sec. V we discuss applications of the theory to ro
tional excitations of pairs, clusters and swarms.

II. EQUATIONS OF MOTION FOR ACTIVE BROWNIAN
DYNAMICS

The motion of Brownian particles with velocity
dependent friction can be described by the Langevin eq
tion,

ṙ5v; mv̇52g~v !v2“U~r!1j~ t !, ~1!

whereg(v) is the effective friction function of the particle
with massm at positionr, moving with velocityv. U(r) can
be either an external potential or the result of a mean field
the following we will choose units in whichm[1. j(t) is a
stochastic force with strengthD and ad-correlated time de-
pendence,

^j~ t !&50; ^j~ t !j~ t8!&52Dd~ t2t8!. ~2!

In the case of systems in thermal equilibrium, withg(v)
5g05const, we may assume that the loss of energy res
ing from friction, and the gain of energy resulting from th
stochastic force, are compensated in the average. In this
the fluctuation-dissipation theorem~Einstein relation! is,

D5kBTg0 , ~3!

where T is the temperature,kB is the Boltzmann constant
andD is a scaled expression for the strength of the stocha
force in the velocity space.

In this paper we are mainly interested in the influence
forces and interactions where velocity-dependant pump
plays an important role as found, for example, in cert
models of the theory of sound developed by Rayleigh@27#.
In the simplest case we may assume the following frict
function for an individual Brownian particle:

g~v !52a1bv25aS v2

v0
2

21D . ~4!

This Rayleigh-type model is a standard model studied
many papers on Brownian dynamics@21#. We note thatv0

2

5a/b defines a special value of the velocities such that
effective friction is zero. A somewhat different model fo
active friction with a zero pointv0 was introduced and
treated by the authors of Refs.@18,19#. There the friction
function is based on the a model of Brownian motion w
energy depot. The authors of Refs.@18–20# assume that the
Brownian particle itself is capable of taking up external e
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ergy and storing some of this in an internal energy dep
e(t). This depot model leads to the friction function

g~v !5g02
d0q0

c1d0v2
, ~5!

where q0 the rate of the energy uptake,c the strength of
internal dissipation, andd0 the conversion rate of interna
energy into energy of motion.

Due to the pumping slow particles are accelerated and
particles are damped. For certain conditions, the active f
tion functions have a zero corresponding to the station
velocity v0, where the effective friction disappears. The d
terministic trajectory of the system is in both cases attrac
by a cylinder in the 4D phase space@20,28# given by

v1
21v2

25v0
2 , ~6!

wherev0 is the value of the stationary velocity which for th
Rayleigh-model, is given byv0

25a/b and for the depot
model byv0

25q0 /g02c/d0. The parameterm5a/b in the
Rayleigh model andm5q0/g02c/d0 for the depot model
plays the role of a bifurcation parameter. Both the Rayleig
model and the depot model show a bifurcation ifm becomes
greater than zero, i.e.,v0 becomes real. If the bifurcation
parameter is greater then zero in both models the system
the pumping regime. Form,0 the particles behave simila
to the classical friction case.

We will restrict here our study to the case of rather we
driving forces. Near to the bifurcation point both mode
may be unified. Therefore we use the Rayleigh model for
further investigations.

The stationary solutions of the Fokker-Planck equation
the probability distributionP(r,v,t)

]P

]t
52v•

]P

]r
2¹U~r!•

]P

]v
1

]

]v
•H g~v !vP1D

]P

]v J
~7!

reads for the Rayleigh model@20#

P0~v !5C expFbv2

2D S m2
1

2
v2D G . ~8!

The shape of this distribution Eq.~8! can be seen in Fig. 1. A
bifurcation to limit cycle atm50 can be seen for the nois
system. It is obvious that the system above the bifurcat
point is far from equilibrium and shows a permanent moti
of the particles. Noise mediated Hopf bifurcations were e
lier studied in Refs.@29,30#.

III. ACTIVE MOTION IN EXTERNAL POTENTIALS
WITH ROTATIONAL SYMMETRY

For further investigations, let us summarize results fou
in earlier works@18–20#. We specify the potentialU(r) as a
symmetric parabolic potential:
6-2
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EXCITATION OF ROTATIONAL MODES IN TWO- . . . PHYSICAL REVIEW E 65 061106
U~x1 ,x2!5
1

2
a~x1

21x2
2!. ~9!

First, we restrict the discussion to a deterministic moti
which then is described by the differential equations:

ẍ152g~v1 ,v2!v12ax1 , ~10a!

ẍ252g~v1 ,v2!v22ax2 . ~10b!

For the one-dimensional Rayleigh-model this system p
sesses a limit cycle corresponding to sustained oscillat
with the energyE05a/b.

For the 2D case we have shown in Ref.@20# that a limit
cycle in the 4D phase space is developed. The projectio
this periodic motion on the$v1 ,v2% plane and on the$x1 ,x2%
plane are circles

v1
21v2

25v0
25const,

~11!
x1

21x2
25r 0

25const.

The limit cycle energy is

E05
v0

2

2
1

a

2
r 0

2 . ~12!

It has been shown in Ref.@18#, that any initial value of the
energy converges~at least in the limit of strong pumping! to

FIG. 1. Normalized stationary distributionP0(v1 ,v2) of the
noisy fixed point and limit cycle in the velocity space for increasi
values ofm521.0 ~upper!, m54.0 ~lower!, b51.0.
06110
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H→E05mv0
2 . ~13!

This corresponds to an equal distribution between kine
and potential energy, i.e., both parts contribute the sa
amount to the total energy. The motion on the limit cycle
the 4D space may be represented by the four equations

x15r 0 sin~v0t1f0!, v152r 0v0 cos~v0t1f0!,
~14!

x25r 0 cos~v0t1f0!, v25r 0v0 sin~v0t1f0!.

The frequency follows by estimations of the time the p
ticle needs for one period moving on the circle with radiusr 0
with constant speedv0:

v05
v0

r 0
5S a

mD 1/2

5v. ~15!

This means, the particle oscillates even at strong pump
with the frequency given by the linear oscillator frequencyv
~at least in our approximation!.

The trajectory defined by the above four equations is l
a hoop in the 4D space. Most projections to the 2D s
spaces are circles or ellipses however there are two
spaces, namely,x1-v2 andx2-v1 where the projection is like
a rod @20# .

Varying the initial conditions of the system a second lim
cycle can be obtained. This limit cycle forms also a hu
hoop that is different from the first one. However both lim
cycles have the same projections on the$x1 ,x2% and on the
$v1 ,v2% plane. The projection to the$x1 ,x2% plane has the
opposite sense of rotation in comparison with the first lim
cycle. The separatrix between the two attractor regions
given by the following plane in the 4D space:

~v0x12v1!1~v0x22v2!50. ~16!

Applying similar arguments to the stochastic problem
expect that the two hoops are converted into a distribut
with the appearance of two embracing hoops with finite si
which for strong noise converts into two embracing hoops
the 4D phase space~see@20# for details!. In order to obtain
the explicit form of the distribution, we introduce th
amplitude-phase representation

x15r sin~v0t1f!, v15rv0 cos~v0t1f!,
~17!

x25r cos~v0t1f!, v252rv0 sin~v0t1f!,

where radiusr and phasef are slow and fast stochasti
variables, respectively. By using the standard procedure
averaging with respect to the fast phases we obtain for
Rayleigh model of pumping the following distribution of th
radii:

P0~r!.expFbv0
2

D
r2S m2

1

2
v0

2r2D G . ~18!

We see that the probability crater is surrounded by the
deterministic limit cycles~see Fig. 2!. The full stationary
probability in the 4D phase space has the form of two h
6-3



to

es
ne
ne

al
e
th
ai
b
p

tu

y
t
n
ia
o
m
e
u
a
o
a
di
to
in
e
n
a
I

om
hu
ke

nt

b-

for

f
la-
d-

nite

u-

of

-

the
re-
e

the
r

ce
is

I.
t
n the

b
ed
to

UDO ERDMANN, WERNER EBELING, AND VADIM S. ANISHCHENKO PHYSICAL REVIEW E65 061106
hoop distributions. The projections of the distribution on
the$x1 ,x2% plane and to the$v1 ,v2% plane are 2D rings. The
hula hoop distribution intersects perpendicularly the$x1 ,v2%
plane and the$x2 ,v1% plane. The projections to these plan
are rodlike, and the intersection manifold with these pla
consists of two ellipses located in the diagonals of the pla
@20#.

For an arbitrary initial condition one of two the rotation
motions within the parabolic potential is excited. In the d
terministic case this rotation remains a stable solution of
trajectory of one particle. To this rotation belongs a cert
value of the angular momentum. For nonvanishing pertur
tions, e.g. white noise, the particle is able to cross the se
ratrix between the two rotational modes~limit cycles!. In this
case one can observe an inversion of the angular momen
of the particle@20#.

IV. BIFURCATION ANALYSIS OF THE DYNAMICS
OF A SYSTEM WITH AN ASYMMETRIC POTENTIAL

Without external fluctuations the system~1! has radial
symmetry. In the mathematical context such dynamical s
tems are degenerate and structurally unstable. From
physical viewpoint, radial symmetry is a special situatio
i.e., the gravitational field of point masses has strict rad
symmetry and, therefore, this is true also for a tw
dimensional mass-point pendulum. In real physical syste
the radial symmetry is, in general, broken, e.g., a real p
dulum in the earth field has no strict radial symmetry. Th
the oscillator with radial symmetry can only be considered
a particular case of corresponding real system that has s
asymmetry. In addition to these general arguments we h
some special motivation to study the case of broken ra
symmetry. We plan the transition from external fields
mean fields generated by swarms of particles. First steps
this direction will be done in the last paragraph of this pap
However the mean field generated by a swarm will have
radial symmetry except the degenerate case that the sw
of particles and the forces have strict radial symmetry.
general swarms of particles can have a variety of rather c
plicated forms that leads to asymmetric mean fields. T
our motivation is, to investigate the consequences of bro
radial symmetry on the generation of rotational modes.

For the reasons explained above we will introduce i

FIG. 2. Probability distributionP0(r) in the coordinate space
$x1 ,x2%. One can easily see that the region of the most proba
radii is located above the two limit cycles which were obtain
from simulations. (D50.03. All other parameters are set equal
1.!
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the model~1! a frequency mismatch between the partial su
systems. In this case the potentialU(r ) has an elliptic,
slightly extended shape. In other words, the expression
the symmetric potential Eq.~9! can be rewritten as follows:

U~x1 ,x2!5
1

2
~a1x1

21a2x2
2!, ~19a!

Aa1

a2
5D5

v1

v2
. ~19b!

With this, the deterministic part of Eq.~1! leads to

ẋ15v1 , v̇15@a2b~v1
21v2

2!#v12v1
2x1 , ~20a!

ẋ25v2 , v̇25@a2b~v1
21v2

2!#v22v2
2x2 . ~20b!

For DÞ1 the system~20! is structurally stable or is one o
the common propositions according to Arnold’s nomenc
ture. It can describe the interaction of two oscillators, inclu
ing the influence of noise.

To understand the dynamics of system~20!, we first turn
again to the symmetric case wherev1

25v2
2. We introduce a

complex variablez5x11 jx2 by settingv1
25v2

25v0
2. From

Eq. ~20! it follows that

z̈2bS a

b
2użu2D ż1v0

2z50. ~21!

Equation~21! has periodic solutions of the form

z~ t !5z exp~6 j v0t !5uzuexp~ j F!exp~6 j v0t !, ~22!

where the phaseF takes any value in the interval@0,2p#.
When we consider the symmetric case, we have an infi
number of periodic solutions@see Eq.~22!#. However, linear
analysis cannot yield information about their stability. In n
meric calculations, we can really detect six limit cycles~in
the symmetric case!. Each of them possesses its own type
symmetry. When there is a detuning (DÞ1), only two limit
cycles remain stable, namely,G1 andG2 as described in de
tail in Sec. III. Further on we consider only these two.

Figure 3 shows projections of cyclesG1 andG2 on differ-
ent planes of the phase variables. It can be seen that
cycles are symmetric mirror images of one another. The
fore, we will perform the bifurcation analysis only for cycl
G1 .

We estimate the stability of cycleG1 by calculating its
Floquet multipliers and registering the bifurcations when
multipliers reach the unit circle. A bifurcation diagram fo
the cycleG1 on the (a2D) plane is shown in Fig. 4 for fixed
b51 andv152. Inside region I, we have the 1:1 resonan
on a two-dimensional torus. The resonance domain
bounded by the bifurcation linesl 1 which correspond to a
saddle-node bifurcation of cycleG1 ~its largest multiplier
becomes equal to11!.

Cycle G1 is stable inside the synchronization region
When crossing the linel 1 the cycle merges with a relevan
saddle cycle and disappears. The resonance structure o

le
6-4
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EXCITATION OF ROTATIONAL MODES IN TWO- . . . PHYSICAL REVIEW E 65 061106
torus is thus destroyed, and so the torus becomes ergod
full bifurcation diagram for system~20! is shown in Fig. 5
and illustrates a classical picture of Arnold’s tongues cor
sponding to rational values of the winding numberQ
5m:n, m,n51,2, . . . .

From a physical viewpoint, Fig. 5 testifies to the presen
of multistability in the system~20!. This phenomenon is con

FIG. 3. Limit cycles of the detuned system without noise. T
system kept two of six cycles found in the symmetric system. T
is also an overview of the variety of cycles in the stabilizati
region I ~see also Fig. 4!.
06110
. A
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e

ditioned by an overlapping of the resonance regions as
parametera increases. This fact allows one to understand
peculiarities of the system response to external noise.
instance, inside the 1:1 region~region I in Fig. 4! the effect
of noise causes the trajectory to wander in the neighborho
of stable cyclesG1 andG2 ~see Fig. 6!. Outside the synchro-
nization region phase trajectories are more complicated
intertwined~see Fig. 7!. Such behavior is determined by th
presence of a large number of dynamical regimes in sys
~20!, which include both ergodic and periodic trajectories

V. MOTION OF PAIRS, CLUSTERS, AND SWARMS

An application of the theoretical results given above,
the following: Let us imagine two Brownian particles th
are pairwise bound to a dumb-bell-like configuration by
potentialU(ur 12r 2u) with parabolic shape. Then the motio
consists of two independent parts: The free motion of
center of mass having the coordinates

s

FIG. 4. Region of synchronization of the coupled oscillators
fixed b51 andv152. Within the gray region~I! the limit cycles
G1 and G2 are stable even under small perturbations~noise! ~see
also Fig. 7!. The region represents the 1:1 resonance of a tw
dimensional torus.

FIG. 5. Full bifurcation diagram of the system~20! showing the
Arnold tongues.
6-5
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X15
1

2
~x111x21!; X25

1

2
~x121x22!, ~23!

and the relative motion described by the coordinates

x̃15x112x12; x̃25x122x22, ~24!

FIG. 6. Overview of the variety of cycles in the stabilizatio
region I with noise. The stochastic trajectories are situated clos
the deterministic cyclesG1 andG2.
06110
under the influence of the potential. The motion of the cen
of massM is approximately described by the equations:

Ẋ15V1 , MV̇152g~V1 ,V2!V1 ,
~25!

Ẋ25V2 , MV̇252g~V1 ,V2!V2 .

to

FIG. 7. Overview of the variety of cycles outside the stabiliz
tion region I with noise. The limit cycles are not stable anymo
The trajectories leave the 1:1 resonance and are situated on th
torus now.
6-6
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EXCITATION OF ROTATIONAL MODES IN TWO- . . . PHYSICAL REVIEW E 65 061106
Further the relative motion is approximately described by
equations:

ẋ̃15 ṽ1 ,
1

2
v̇̃152g~ ṽ1 ,ṽ2!ṽ12a1x̃1 , ~26a!

ẋ̃25 ṽ2 ,
1

2
v̇̃252g~ ṽ1 ,ṽ2!ṽ22a1x̃2 . ~26b!

As a consequence, the center of mass of the dumb bell
make a driven Brownian motion, but in addition the dum
bell is driven to rotate around its center of mass. What
observe then is a system of pumped Brownian molecu
which, with respect to their center of mass velocities, hav
distribution corresponding to Eq.~8!. However the internal
degrees of freedom are also excited and we observe dr
rotations and, in general, oscillations also. In this way
have shown that the mechanisms described here may be
also to excite the internal degrees of freedom of Brown
molecules.

An extension of this theory of pairs can be an applicat
to the motion of clusters of active particles. Let us assu
that the interaction of the particles within the cluster is giv
by a van der Waals shaped interaction with a relatively lo
range tail. For example, we may use the interaction mo
proposed by Morse@31,32#

f i j 5
A

2b
@~e2b(r 2s)21!221#. ~27!

Because of the attracting tail the particles will bind to t
clusters. The individual particles then move in the collect
field of the other particles. This can be represented in a m
field approximation,

V~ r̃!5E dr8f~ r̃2r8!r~r8!, ~28!

wherer̃5( x̃1 ,x̃2) is the radius vector counted from the ce
ter of mass, andr(r8) is the mean density within the cluste
ApproximatingV by a quadratic,

V~ x̃1 ,x̃2!5V01
1

2
~a1x̃1

21a2x̃2
2!1•••, ~29!

we arrive again at the harmonic problem we have stud
above. In general, due to the asymmetries of the shape
the swarm we will havea1Þa2. In other words, the indi-
vidual particles in the cluster move, at least in a certain
proximation, in an asymmetric parabolic potential. This
responsible for the excitation of an angular momentum. A
result of this we observe rotating clusters of Brownian p
ticles that change the direction of rotation due to the infl
ence of noise~see Figs. 8 and 9!. Due to the noise induced
perturbations the excited angular momentum changes
randomly as well~Fig. 9!.

The aforementioned model application may be intere
ing, for example, to biologists, since it describes vortex-ty
motions that change direction spontaneously and rando
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as observed under certain conditions with actual biolog
swarms@33# . Similarly to the case of the dumb bells, th
clusters will be driven to make spontaneous changes in
directions of rotation. Finally a stationary state will b

FIG. 8. Rotating cluster of 20 particles for different time step
The arrows correspond to the velocity of the single particle. B
cause of the influence of noise the cluster changes the directio
rotation randomly.
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reached that is a mixture of rotating clusters. With increas
asymmetry of the shape of the cluster or swarm, the dif
ences betweena1 anda2 will increase. Consequently we ca
predict, according to our findings in Sec. IV, that strong
nonsymmetric clusters, will switch from more or less regu
rotations to more irregular motions. The overlapping str
ture of the Arnold tongues in Fig. 5 suggests that the irre
lar motion can be chaotic.

VI. DISCUSSION

The main objective of this work was to study the infl
ence of linear attracting forces on active Brownian particl
We studied both external forces and particle-particle inter
tion forces as well.

The basic assumption was to add to the dynamics
simple physical Brownian particles a different mechanis
pumping with free energy. This was realized by includi
energy uptake into a depot, and simultaneous conversio
the energy into mechanical motion, with stochastic infl
ences. In this way, as we have shown, motions of the
ticles become more complex, showing different dynami
features and, in particular, the appearance of rotatio

FIG. 9. Evolution of the angular momentum of the cluster. O
can see that it stochastically changes the sign.
et
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modes. The main topic of this investigation was the study
linear forces that do not possess the property of radial s
metry acting on the particles. We have shown that with
creasing asymmetry the limit cycles describing the rotatio
modes are destroyed, and the bifurcation diagram sh
typical Arnold tongues. This might affect the behavior
clusters or swarms that typically perform left or right rot
tions but may switch to an irregular dynamics if the asy
metry is large enough.

From summarizing the results above one can deduce
the combination of self-propelling features with particl
particle interaction forces that form a mean field to eve
particle can resemble vortex-type motions. The connectio
the nonlinear driving forces with paraboliclike mean fiel
shows stable rotational modes within the first Arnold tong
The higher the energy uptake rate the more asymmetric
mean field can be for stable rotations of the clusters. If
rotational modes are destroyed it is due to the increas
asymmetry of the cluster or due to the decreasing ene
uptake of the single particles.

Therefore the shown model may resemble active biolo
cal motion. At least it could be a first ansatz to model b
logical systems that show swarming behavior with vorte
type modes. The advantage of the model is the simplicity
the system of equations. It would be very easy to apply t
approach to more concrete biological systems. In orde
avoid misunderstandings we underline, that we did not
tend here to model any particular nonphysical object. Inst
we analyze particular physical, nonequilibrium systems t
show new types of dynamics. These results might be of
terest for later, more concrete applications in particular to
dynamics of swarms.
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@25# A. Czirók and T. Vicsek, Physica A281, 17 ~2000!.
@26# O. Steuernagel, W. Ebeling, and V. Calenbuhr, Chaos, Solit
06110
-

s

Fractals4, 1917~1994!.
@27# J.W. Rayleigh,The Theory of Sound, 2nd ed.~Dover, New

York, 1945!, Vol. I.
@28# W. Ebeling, U. Erdmann, L. Schimansky-Geier, and

Schweitzer, inStochastic and Chaotic Dynamics in the Lake,
edited by D.S. Broomhead, E.A. Luchinskaya, P.V.E. McCl
tock, and T. Mulin, AIP Conf. Proc. No. 502~AIP, Melville,
NY, 2000!, pp. 183–190.

@29# L. Fronzoni, R. Manella, P.M.V. McClintock, and F. Mos
Phys. Rev. A36, 834 ~1987!.

@30# L. Fronzoni, F. Moss, and P.M.V. McClintock, Phys. Rev.
36, 1492~1987!.

@31# P.M. Morse and E.C.G. Stueckelberg, Phys. Rev.33, 932
~1929!.

@32# P.M. Morse, Phys. Rev.34, 57 ~1929!.
@33# F. Moss~private communication!.
6-9


