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Excitation of rotational modes in two-dimensional systems of driven Brownian particles
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Models of active Brownian motion in two-dimensiori@D) systems developed earlier are investigated with
respect to the influence of linear attracting forces and external noise. Our consideration is restricted to the case
that the driving is rather weak and that the forces show only weak deviations from radial symmetry. In this case
an analytical study of the bifurcations of the system is possible. We show that in the presence of external linear
forces with only small deviations from radial symmetry, the system develops rotational excitations with left-
right symmetry, corresponding to limit cycles in the 4D phase space, the corresponding distribution has the
form of a hoop or a tire in the 4D space. In the last part we apply the theory to swarms of Brownian particles
that are held together by weak and attracting forces, which lead to cluster formation. Since near the center the
potential is at least approximately parabolic and near to the radial symmetry, the swarm develops rotational
modes of motion with left-right symmetry.
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[. INTRODUCTION active motion concept, for example self-propelling particles,
with direct particle-particle interaction. This results in a
Recently several papers describing coherent motions ofider variety of possible models especially for biological
swarms were publishdd —14]. It was shown there that rela- systems. While previous studi¢$,5,25 were able to de-
tively simple physical models can be used to describe comscribe simple collective motions, they were unable to accom-
plex behavior of moving clusters in physif3,15], biology =~ modate properties of individual particles, for example, spe-
[6,8,9,14,16 and social systermd.1,12,17. In many of these cific attractive interactions that would lead to swarming.
published works, spontaneous motions of clusters were The question that will be addressed here is; why can clus-
shown to arise from a self-propelling feature of individual ters of interacting particles collect as a swarm and then rotate
particles[1,5,6,8—-10,18 as, for example, exhibited by flocks of birds, and what could
In [1,5,10,11,1% the influence of noise on the coherent be a plausible reason for these motions. Another problem we
behavior of the swarms was studied. In most of the cases w&ould like to address is; what is the consequence of broken
phase transition in the type of coherent motion was prefradial symmetry of the swarm, can spontaneous rotations be
dicted, with increasing noise. Rotational modes, or vortexstopped by certain amount of asymmetry?
states, were observed, for example, in REf. Vortex states, In contrast to previous studie§l,4,5,13 the self-
objects of high current interest, can be used for the descripsropelling feature is modeled by active Brownian particles
tion of flocks of birds[2,7], systems of dusty plasm&8],  with negative friction[18—20,26 that are able to convert
and bacteria in a Petri didd,6,9,13. stored internal energy into motion. As we show below, this
In earlier paperd18-20 we introduced a generalized self-propelling feature combined with the attractive particle-
idea of stochastically moving species, active Brownian parparticle interaction is a sufficient reason accounting for the
ticles. We want to recall this approach that will be used lateformation of swarms and this subsequent vortexlike motion.
on. Active Brownian particles are Brownian particles with  We will start our investigations by adding to the dynamics
the ability to take up energy from the environment and use ibf simple physical Brownian particles different mechanisms
for the acceleration of motion. Simple models composed okuch as pumping with free energy, which may be realized in
active Brownian particles were studied in many earlier worksseveral steps as by energy take up, storage and conversion of
[21-24. As already mentioned flocking behavior was de-energy, and energy consuming motion. In this way, the par-
scribed by interacting mechanisms so fab]. The concept ticle motions become more complex resulting in dynamical
of self-propelled particlefl] leads to flocking behavior be- features that may resemble active biological motions. Hence,
cause of locally interacting particles that differ from previousthe basic idea can be formulated as follows: how much phys-
models due to an intrinsic driving force. In this paper weics is heeded to achieve a degree of complexity that gives us
extend previous studies to include the interplay of self-the impression of motional phenomena found in biological
propelling features and direct interaction forces simulta-systems? We will come back to this question in the last part.
neously that lead to the rotating clusters or to oscillating In this paper, we will study only the motion in external
clusters in one dimensiofiD) [10]. This paper unites the fields on a planed=2). In particular we are interested in
rotational motions that are excited by the coupling of nonlin-
ear velocity-dependerihegative friction terms and interac-
*Electronic address: udo.erdmann@physik.hu-berlin.de tion forces that can be described by a mean field.
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In Sec. Il, we revisit the idea of pumping by negative ergy and storing some of this in an internal energy depot,
friction and outline the basic dynamics of our model includ-e(t). This depot model leads to the friction function
ing Langevin and Fokker-Planck equations.

In Sec. Il we outline our previous studies of rotationally d
. . oo
symmetric external potentials. Y0)=vo— ———, (5)
In Sec. IV we consider the case of active Brownian mo- c+dov
tion in external potentials without rotational symmetry, in
particular, in asymmetric parabolic potentials. where g, the rate of the energy uptake,the strength of
In Sec. V we discuss applications of the theory to rota-internal dissipation, and, the conversion rate of internal
tional excitations of pairs, clusters and swarms. energy into energy of motion.
Due to the pumping slow particles are accelerated and fast
Il. EQUATIONS OF MOTION FOR ACTIVE BROWNIAN particles are damped. For certain conditions, the active fric-
' DYNAMICS tion functions have a zero corresponding to the stationary

velocity vy, Where the effective friction disappears. The de-
The motion of Brownian particles with velocity- terministic trajectory of the system is in both cases attracted
dependent friction can be described by the Langevin equasy a cylinder in the 4D phase spal@0,28 given by
tion,
. . v§+ v§=vg, (6)
r=v; mov=-—7y(v)v—VU(r)+§&t), (1)
. ) L , ) whereuv is the value of the stationary velocity which for the
W!:ﬁre v(v) |stthe _(ta_ffecnve fr_|ct|on_tLunc;uor_1 of tBe particle Rayleigh-model, is given by;éza/ﬂ and for the depot
with massm at positionr, moving with velocityv. U(r) can model byp2=qo/yo—c/dy. The parameter.=al 8 in the

be either an external potential or the result of a mean field. lrl}{ayleigh model andu =g/ yo—c/d, for the depot model
; : L I : =qo/ 7o 0
the following we will choose units in whicm=1. £() is a plays the role of a bifurcation parameter. Both the Rayleigh-

stochastic force with strengib and ad-correlated time de- . L
endence model and the depot model show a bifurcatiomibecomes
P ' greater than zero, i.eyy, becomes real. If the bifurcation
t))=0: DAL )Y =2D S(t—1"). 2 paramete.r is gregter then zero in both models the sys_tem isin

(&1) (§O&)) ( ) @ the pumping regime. For<0 the particles behave similar

In the case of systems in thermal equilibrium, wilfp)  © the classical friction case.

= yo=const, we may assume that the loss of energy result- _V_Ve will restrict here our stu_dy to t_he case of rather weak

ing from friction, and the gain of energy resulting from the drving forces. Near to the bifurcation point both models

stochastic force, are compensated in the average. In this ca@¥ Pe unified. Therefore we use the Rayleigh model for all

the fluctuation-dissipation theoref&instein relation is, urther investigations. .
The stationary solutions of the Fokker-Planck equation for

D=kgTvo, 3) the probability distributiorP(r,v,t)
whereT is the temperaturekg is the Boltzmann constant, P JP P 4d aP
andD is a scaled expression for the strength of the stochastic st = ° ar vu(n)- 90 oo y(v)vP+ D%
force in the velocity space. (7)

In this paper we are mainly interested in the influence of
forces and interactions where velocity-dependant pumpingeads for the Rayleigh modg2Q]
plays an important role as found, for example, in certain

models of the theory of sound developed by Rayldigh]. Bv? 1
In the simplest case we may assume the following friction Po(v)=Cexg==| u— zv?||. (8)
) e ) o 2D 2
function for an individual Brownian patrticle:
2 The shape of this distribution E¢8) can be seen in Fig. 1. A
y(v)=—a+ Bvi=a v 1. (4)  bifurcation to limit cycle atu=0 can be seen for the noisy
v% system. It is obvious that the system above the bifurcation

point is far from equilibrium and shows a permanent motion
This Rayleigh-type model is a standard model studied irof the particles. Noise mediated Hopf bifurcations were ear-
many papers on Brownian dynamifl]. We note thawg lier studied in Refs[29,30.
= a/ B defines a special value of the velocities such that the
effective friction is zero. A somewhat different model for
active friction with a zero pointv, was introduced and
treated by the authors of Refgl8,19. There the friction
function is based on the a model of Brownian motion with  For further investigations, let us summarize results found
energy depot. The authors of Ref$8—2( assume that the in earlier works[18—-20. We specify the potentidl(r) as a
Brownian particle itself is capable of taking up external en-symmetric parabolic potential:

Ill. ACTIVE MOTION IN EXTERNAL POTENTIALS
WITH ROTATIONAL SYMMETRY
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037 - H—Eo=muv3. (13

0.2+ // \ This corresponds to an equal distribution between kinetic
P A and potential energy, i.e., both parts contribute the same
ot amount to the total energy. The motion on the limit cycle in

the 4D space may be represented by the four equations

% a3 X1=I’Osin(wot+¢0), v1=—l‘0wocoiwot+ ¢0),

(14)

X2=roCOS(wot+d>0), U2:r0wosir(w0t+ d)o)

The frequency follows by estimations of the time the par-
ticle needs for one period moving on the circle with radigs

with constant speed:
037
12

=w. (15

This means, the particle oscillates even at strong pumping
with the frequency given by the linear oscillator frequercy
(at least in our approximation

The trajectory defined by the above four equations is like
a hoop in the 4D space. Most projections to the 2D sub-
spaces are circles or ellipses however there are two sub-
spaces, namely;-v, andx,-v, where the projection is like
a rod[20] .

Varying the initial conditions of the system a second limit
cycle can be obtained. This limit cycle forms also a hula
hoop that is different from the first one. However both limit
cycles have the same projections on {ke,x,} and on the
{v1,v,} plane. The projection to thgx,,x,} plane has the
opposite sense of rotation in comparison with the first limit
U(Xq %) = % a(xf +x§). (9) cycle. The separat_rix betwec_an the two attraTctor regions is

given by the following plane in the 4D space:

FIG. 1. Normalized stationary distributioRy(v,v,) of the
noisy fixed point and limit cycle in the velocity space for increasing
values ofu=—1.0 (uppe), u=4.0 (lower), B=1.0.

First, we restrict the discussion to a deterministic motion, (woX1—v1)+ (weXa—v45)=0. (16)
which then is described by the differential equations:
Applying similar arguments to the stochastic problem we

X1=—v(v1,00)v1—aXy, (109  expect that the two hoops are converted into a distribution
with the appearance of two embracing hoops with finite size,
Xo=—Y(V1,02)02—aXy. (10p  Which for strong noise converts into two embracing hoops in

the 4D phase spadsee[20] for detailg. In order to obtain
For the one-dimensional Rayleigh-model this system posthe explicit form of the distribution, we introduce the
sesses a limit cycle corresponding to sustained oscillationamplitude-phase representation
with the energyEqy= a/B.

For the 2D case we have shown in REZ0] that a limit X1=psif(wot+¢), v1=pwoCofwet+¢),
cycle in the 4D phase space is developed. The projection of ] a7
this periodic motion on thév;,v,} plane and on théx; ,x,} Xp=p COgwot+ @),  v2=—pwoSiN(wet+ ),

plane are circles where radiusp and phasegp are slow and fast stochastic

v§+v§:v§=const, variables, respectively. By using the standard procedure of
(11) averaging with respect to the fast phases we obtain for the
X3+ x3=r2=const. Rz(ajxleigh model of pumping the following distribution of the
radii:
The limit cycle energy is Bo? L
vg a PO(P)ZeXF{_DOPZ(,U«_ Ewﬁpz) : (18)
Eo=7 + Erg. (12)

We see that the probability crater is surrounded by the two
It has been shown in Rdf18], that any initial value of the deterministic limit cycles(see Fig. 2. The full stationary
energy converge&t least in the limit of strong pumpingo  probability in the 4D phase space has the form of two hula
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the model(1) a frequency mismatch between the partial sub-
systems. In this case the potentidl(r) has an elliptic,
slightly extended shape. In other words, the expression for
the symmetric potential Eq9) can be rewritten as follows:

1
U(x1.%;) = 5 (a1xi +@2%5), (19a
a, w1
FIG. 2. Probability distributiorP,(p) in the coordinate space a_ZZA: w0, (19b

{X1,X5}. One can easily see that the region of the most probable
radii is located above the two limit cycles which were obtained\yjith this. the deterministic part of Eql) leads to
from simulations. D=0.03. All other parameters are set equal to ’
1) )‘(1:U1, l.)1=[a—,3(v§+vg)]vl—wixl, (208)
hoop distributions. The projections of the distribution onto
the{x;,X,} plane and to thév,v,} plane are 2D rings. The

hula hoop distribution intersects perpendicularly {ke, v} For A+ 1 the systen(20) is structurally stable or is one of
plane and th¢x,,v1} plane. The projections to these planesthe common propositions according to Arnold’s nomencla-
are rodlike, and the intersection manifold with these planegyre. It can describe the interaction of two oscillators, includ-
consists of two ellipses located in the diagonals of the planeﬁlg the influence of noise.

[20]. To understand the dynamics of systéad), we first turn

F_or an grpitrary initial co_ndition one _of twq the rotational again to the symmetric case whewé= w%_ We introduce a
motions within the parabolic potential is excited. In the de'complex variablez=x, + jx, by settingw?= w2= w2. From

ter_ministic case this r_otation remains a stable solution of th%q. (20) it follows that
trajectory of one particle. To this rotation belongs a certain
value of the angular momentum. For nonvanishing perturba-

tions, e.g. white noise, the particle is able to cross the sepa- z—pB
ratrix between the two rotational modg@init cycles). In this
case one can observe an inversion of the angular momentu
of the particle[20].

5(2:U2, l.)2=[a—ﬁ(vi+v§)]v2—ngz. (ZOb)

o
——|2?|z+ w3z=0. (21)

B

Bhuation(21) has periodic solutions of the form

z(t)=zexp *jwet)=|z|expj®)exp = jwet), (22)

IV. BIFURCATION ANALYSIS OF THE DYNAMICS

OF A SYSTEM WITH AN ASYMMETRIC POTENTIAL where the phas@ takes any value in the interv@D,27].

When we consider the symmetric case, we have an infinite
Without external fluctuations the systefh) has radial number of periodic solutionsee Eq(22)]. However, linear
symmetry. In the mathematical context such dynamical sysanalysis cannot yield information about their stability. In nu-

tems are degenerate and structurally unstable. From tH&eric calculations, we can really detect six limit cycles
physical viewpoint, radial symmetry is a special situation,the symmetric cagseEach of them possesses its own type of
i.e., the gravitational field of point masses has strict radiasymmetry. When there is a detuning 1), only two limit
symmetry and, therefore, this is true also for a two-Cycles remain stable, namely; andI', as described in de-
dimensional mass-point pendulum. In real physical systemtail in Sec. lll. Further on we consider only these two.
the radial symmetry is, in general, broken, e.g., a real pen- Figure 3 shows projections of cycl#§ andI", on differ-
dulum in the earth field has no strict radial symmetry. Thusent planes of the phase variables. It can be seen that the
the oscillator with radial symmetry can only be considered agycles are symmetric mirror images of one another. There-
a particular case of corresponding real system that has sonfiere, we will perform the bifurcation analysis only for cycle
asymmetry. In addition to these general arguments we have; -
some special motivation to study the case of broken radial We estimate the stability of cycl€; by calculating its
symmetry. We plan the transition from external fields toFloquet multipliers and registering the bifurcations when the
mean fields generated by swarms of particles. First steps intultipliers reach the unit circle. A bifurcation diagram for
this direction will be done in the last paragraph of this paperthe cyclel’; on the (@— A) plane is shown in Fig. 4 for fixed
However the mean field generated by a swarm will have ng8=1 andw;=2. Inside region |, we have the 1:1 resonance
radial symmetry except the degenerate case that the swardm a two-dimensional torus. The resonance domain is
of particles and the forces have strict radial symmetry. Inbounded by the bifurcation linels which correspond to a
general swarms of particles can have a variety of rather conmsaddle-node bifurcation of cycl€, (its largest multiplier
plicated forms that leads to asymmetric mean fields. Thugecomes equal te-1).
our motivation is, to investigate the consequences of broken Cycle I'; is stable inside the synchronization region I.
radial symmetry on the generation of rotational modes. When crossing the ling; the cycle merges with a relevant
For the reasons explained above we will introduce intosaddle cycle and disappears. The resonance structure on the
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1.5 T " T . . . . 7
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2 15 -1 05 0 05 1 15 2
X 1
1 | L | 0
/ \ 0.2 04 0.6 0.8 1 12 14 1.6 18
I | A=0/w,
~ ol | FIG. 4. Region of synchronization of the coupled oscillators for
. fixed B=1 andw,=2. Within the gray regior{l) the limit cycles
gt ] I'y andTI', are stable even under small perturbatignsise (see
also Fig. 7. The region represents the 1:1 resonance of a two-
2t 1 dimensional torus.
2 ! 0 1 2 ditioned by an overlapping of the resonance regions as the
V, . .
paramete increases. This fact allows one to understand the
I a— peculiarities of the system response to external noise. For
2t b T instance, inside the 1:1 regidregion | in Fig. 4 the effect
.| | of noise causes the trajectory to wander in the neighborhoods
\ / of stable cycled’; andI', (see Fig. 6. Outside the synchro-
S ool ] nization region phase trajectories are more complicated and
intertwined(see Fig. 7. Such behavior is determined by the
-1t 1 presence of a large number of dynamical regimes in system
(20), which include both ergodic and periodic trajectories.
2t
2 15 -1 05 0 05 1 15 2 V. MOTION OF PAIRS, CLUSTERS, AND SWARMS
X
! An application of the theoretical results given above, is
the following: Let us imagine two Brownian particles that
=0

2y SN P 1 are pairwise bound to a dumb-bell-like configuration by a
Al . . | potentialU(|r,—r,|) with parabolic shape. Then the motion
' ’ consists of two independent parts: The free motion of the
I ] center of mass having the coordinates
gt 1
2 ] T

FIG. 3. Limit cycles of the detuned system without noise. The
system kept two of six cycles found in the symmetric system. This
is also an overview of the variety of cycles in the stabilization
region | (see also Fig. %

torus is thus destroyed, and so the torus becomes ergodic. .
full bifurcation diagram for systeni20) is shown in Fig. 5 i L et
and illustrates a classical picture of Arnold’s tongues corre-es 1 16 2 25 3 35 4 45
sponding to rational values of the winding number
=m:n, mn=12,....

From a physical viewpoint, Fig. 5 testifies to the presence FIG. 5. Full bifurcation diagram of the syste{®0) showing the
of multistability in the systen20). This phenomenon is con- Arnold tongues.
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2t . . . . .
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15 -1 -0.5 0 0.5 1 15 X

X:
2 FIG. 7. Overview of the variety of cycles outside the stabiliza-

FIG. 6. Overview of the variety of cycles in the stabilization tion region | with noise. The limit cycles are not stable anymore.
region | with noise. The stochastic trajectories are situated close tdhe trajectories leave the 1:1 resonance and are situated on the full

the deterministic cycle¥; andI’,. torus now.
1 1 under the influence of the potential. The motion of the center
1=5 (X211t X21); 2= 5 (X121 X22), of massM is approximately described by the equations:
X1=5 (XutXan);  Xo=5 (Xg2H X20) (23 f M tely d bed by th t
and the relative motion described by the coordinates X1=Vi, MVi=—y(Vy, Vo)V,
(29
X1= X117 X125 Xo=X10— X2, (24 X2=Va, MVy=—y(V,V2)V,.
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Further the relative motion is approximately described by the
equations:

X1=01, §v1=—7(;1,;2);1_a1;(1’ (263

X2=U2, Evzz_Y(Ulyvz)Uz_alxz- (26b)

As a consequence, the center of mass of the dumb bell will
make a driven Brownian motion, but in addition the dumb
bell is driven to rotate around its center of mass. What we
observe then is a system of pumped Brownian molecules
which, with respect to their center of mass velocities, have a
distribution corresponding to E@8). However the internal
degrees of freedom are also excited and we observe driven
rotations and, in general, oscillations also. In this way we
have shown that the mechanisms described here may be used
also to excite the internal degrees of freedom of Brownian
molecules.

An extension of this theory of pairs can be an application
to the motion of clusters of active particles. Let us assume
that the interaction of the particles within the cluster is given
by a van der Waals shaped interaction with a relatively long
range tail. For example, we may use the interaction model
proposed by Morsg31,32]

A
$ij=5ple P =1)7-1]. @7

Because of the attracting tail the particles will bind to the
clusters. The individual particles then move in the collective
field of the other particles. This can be represented in a mean
field approximation,

v(r’>=f dr' (-1 )p(r"), (29

wherer= (X, ,X,) is the radius vector counted from the cen-
ter of mass, ang(r’) is the mean density within the cluster.
ApproximatingV by a quadratic,

~ ~ 1 - ~
V(%) =Vot 5 (apd+api)+--, (29

we arrive again at the harmonic problem we have studied
above. In general, due to the asymmetries of the shape of a
the swarm we will havea;#a,. In other words, the indi-
vidual particles in the cluster move, at least in a certain ap-
proximation, in an asymmetric parabolic potential. This is

10
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responsible for the excitation of an angular momentum. As & £ g Rotating cluster of 20 particles for different time steps.

result of this we observe rotating clusters of Brownian par-rhe arrows correspond to the velocity of the single particle. Be-
ticles that change the direction of rotation due to the influ-cayse of the influence of noise the cluster changes the direction of

ence of noisésee Figs. 8 and)9Due to the noise induced rotation randomly.

perturbations the excited angular momentum changes sign
randomly as wellFig. 9).

as observed under certain conditions with actual biological

The aforementioned model application may be interestswarms[33] . Similarly to the case of the dumb bells, the
ing, for example, to biologists, since it describes vortex-typeclusters will be driven to make spontaneous changes in the
motions that change direction spontaneously and randomlglirections of rotation. Finally a stationary state will be
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08 ' - - - - - ' - — modes. The main topic of this investigation was the study of
L linear forces that do not possess the property of radial sym-
o061 T metry acting on the particles. We have shown that with in-
04 L | creasing asymmetry the limit cycles describing the rotational
modes are destroyed, and the bifurcation diagram shows
02+ . typical Arnold tongues. This might affect the behavior of
clusters or swarms that typically perform left or right rota-
0r ] tions but may switch to an irregular dynamics if the asym-
metry is large enough.
02t 1 o
From summarizing the results above one can deduce that
04| . the combination of self-propelling features with particle-
particle interaction forces that form a mean field to every
06 L ] particle can resemble vortex-type motions. The connection of

08 , , , , , , , , , the nonlinear driving forces with paraboliclike mean fields
0 200 400 600 800 1000 1200 1400 1600 1800 2000 shows stable rotational modes within the first Arnold tongue.
¢ The higher the energy uptake rate the more asymmetric the

_ mean field can be for stable rotations of the clusters. If the
FIG. 9. Evolution of the angular momentum of the cluster. Onegtational modes are destroyed it is due to the increasing
can see that it stochastically changes the sign. asymmetry of the cluster or due to the decreasing energy

. . . - . uptake of the single particles.
reached that is a mixture of rotating clusters. With increasing ™ 1,arefore the shown model may resemble active biologi-

asymmetry of the shape of the cluster or swarm, the differ.,; otion. At least it could be a first ansatz to model bio-

ences betweea, anda, will increase. Consequently we can |qqica| systems that show swarming behavior with vortex-
predict, according to our findings in Sec. IV, that stronglytype modes. The advantage of the model is the simplicity of

nonsymmetric clugters, will switph from more or Ies; regularg, system of equations. It would be very easy to apply this
rotations to more irregular motions. The overlapping Struc,,nr0ach to more concrete biological systems. In order to
ture of the Arnold tongues in Fig. 5 suggests that the irregu

. ; avoid misunderstandings we underline, that we did not in-
lar motion can be chaotic. tend here to model any particular nonphysical object. Instead
we analyze particular physical, nonequilibrium systems that
VI. DISCUSSION show new types of dynamics. These results might be of in-

The main objective of this work was to study the influ- terest f_or later, more concrete applications in particular to the
dynamics of swarms.

ence of linear attracting forces on active Brownian particles.
We studied both external forces and particle-particle interac-
tion forces as well.

The basic assumption was to add to the dynamics of The authors acknowledge fruitful discussions with F.
simple physical Brownian particles a different mechanism:Moss(University of Missouri, St. Louisand L. Schimansky-
pumping with free energy. This was realized by includingGeier (Humboldt-University, Berlin, Germany Further-
energy uptake into a depot, and simultaneous conversion afiore, assistance by J. Dunkélumboldt-University, Berlin,
the energy into mechanical motion, with stochastic influ-Germany with some numerics is acknowledged. This work
ences. In this way, as we have shown, motions of the pamwas partly supported by the Humboldt FoundatimMS.A.)
ticles become more complex, showing different dynamicaland the Sfb 555 “Complex Nonlinear Processes” of the Ger-
features and, in particular, the appearance of rotationahan Science FoundatidiDFG) (W.E. and U.E).
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